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EFFECTS OF VARIABLE PHYSICAL PROPERTIES ON HEAT TRANSFER 

IN FREE CONVECTION AROUND A HORIZONTAL CYLINDER 

G. G. Shklover and S. E. Gusev UDC 536.25 

Theoretical and experimental studies have been made on the effects of variable 
viscosity and compressibility on the average heat-transfer coefficient. 

General formulas have been recommended [2, 3] in [i] for calculating heat transfer by 
free convection ~rom a horizontal cylinder; the purpose was to obtain a single formula 
applicable over wide ranges in the Rayleigh and Prandtl numbers. The variability in the 
physical properties was incorporated by taking the mean boundary-layer temperature T v = 
0.5(T0 + T c) as the definitive quantity. Here we determine the ranges in the physical 
parameters in which these formulas apply. An approximate method is proposed for incorporating 
the property variation more precisely. 

There are comparatively few papers dealing with the effects of variability in physical 
properties on heat transfer from horizontal cyliners.: 

Akagi [4] derived an approximate self-modeling solution and showed that the variability 
can be incorporated by solving a self-modeling equation system analogous to that for a 
vertical plate. The solution was derived numerically for an exponential temperature dependence 
of the dynamic viscosity. The average Nusselt number was derived [4] as 

Nu : 0.515(GroPro)~176 (1) 

where Nu = ~D/~; Gr0 = g~0D3(Tc - T0)/v~, which applies for Pro = i00 to I0000; Po/~c = 
i to 140. The correction factor (p0/~c)~ can be discarded if one calculates the physical 
properties from the defining temperature Te = To + 0.75(T c - To). Formula (i) is close to 
the experimental one derived in [5]. 

In [6], measurements for the range i0 = < ~0/~c < 104 gave 

Nu ::  0.70(GroPro)~ ~ (2)  

Studies have been made [7, 8] on the effects of simultaneous temperature dependence for the 
bulk expansion coefficient and kinematic viscosity. 
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Here a comparison with experiment is used to estimate the errors of certain formulas 
associated with inadequate incorporation of the property variation. An approximate method 
is used to derive the analytic form for the correction for simultaneous variation in viscosity 
and compressibility. The method has been checked by comparison with the exact solution and 
with published data. 

We estimated the accuracy of certain general formulas from papers containing primary 
experimental data: for water [5, 9, i0, 11], air [12], and oils [5, ii]. Measurements in 
the laminar range were used: 7.1.104 ! Rav ! 2.10 B Figures 1 and 2 show the results. The 
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formulas of [2, 3] are based on the defining temperature Tv and describe the measurements 
satisfactorily if ~ is slightly variable if the simplex N = 90/~c is close to one. The error 
increases to 25% for N > i0 and to 40% for N < 0.1. The formula of [5] is based on the de- 
fining temperature T o and incorporates the variable viscosity via the simplex (Pr0/Prc)~ 
it gives a good description of the data for oils, but it diverges from the measurements for 
water at B = 8t/8o ~ 4 by up to 30%. None of these three relationships describes the entire 
data set as a whole. 

We consider a laminar free-convective boundary layer around a horizontal cylinder. 
wall temperature T c and the liquid temperature To far from the wall are constant. The 
viscosity and compressibility are dependent on temperature: 

The 

~o/~ = ] + (# - -  I )  o.,, (3) 
~/~o = I + (B - -  I )  0",. (4)  

We t a k e  D and v0/D as  t h e  s c a l e s  f o r  l e n g t h  and v e l o c i t y  and w r i t e  t h e  e q u a t i o n  of  m o t i o n  and 
the energy equation as 

It- au [ B - 1  ] Ou + v  . . . . . .  Gro O +  O", +1 
Ox Oy n2 + 1 sin2x + - ~ y  [1 + ( N - -  1) O"q Oy ' 

O0 O0 1 OzO (5 )  tt, -...~ o ~ ~--- - -  
Ox Oy Pro Oy 2 

with the boundary conditions u = 0 at y = 0, and 6 and 0 = i at y = 0, while 0 = 0 at y = 6 T. 

The problem is solved via the approximate method of [7]. We take the Prandtl number as 
fairly large and neglect the inertial terms in the equation of motion. The temperature dis- 
tribution in the thermal boundary layer ~T is 

0 = ( 1 - - ~ 6 r )  m. (6)  

Then we can determine the velocity and the mean heat transfer: 

Nu = C (GroPro) ~ ~5 e. ( 7 ) 

In the terminology of [13], the method may be called semiintegral, since it uses a preset 
profile not for the two variables but merely for the temperature. A difference from [13] is 
that it incorporates the thicknesses of the thermal and dynamic boundary layers 6 T and 6 as 
well as the boundary condition at y = 6T: in [13], au/ay = o, while in our case the condi- 
tion is derived from that of link-up with the solution in the part 6 T <_ y < 6. 

Values of C have been given in [7], with C = 0.5679 for Pr = ~, which agrees satisfac- 
torily with experiment for highly viscous liquids. Strictly speaking, Nu/Ra ~ for a 
horizontal cylinder decreases as Ra increases in the laminar range, and the more so the 
smaller the Prandtl number, so constant C can give a good description of the heat transfer for 
finite Pr only for a certain range in the Rayleigh number. Nevertheless, the correction 

arising from the property variability given by the approximate method is shown below to 
agree well with the exact boundary-layer solution. 

Calculations give g for m = 2: 

CI 
/ 21 "/'P-~o /I/'P-~~ [ 2-~i - '+  3(k +3)  + 

4C~ 4C, C2 ]__ 1 21--5k 
+(l- -1) l ( l+4)  ]-(1--1)l(l+k)J 48 t- 42k(k_3).C~-- 

C~ 2C1C 2 [ 7-- k 
( l - - l ) l ( l+l )  + l--I  k 2(k- -3)( l+4)(k+l- -3)  

2 ] 3C] 12C]C, [\o,zs,  (81 

kl (l + 1) + k 2 (k 2 --9) +}- k (k --3) (l-- 1 - ] ~ +  l--3) (k+ljJ / 
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Fig. 3. Correction coefficient for property 

variability: i) exact solution, Pro = i; 2 
and 3) approximate solutions for Pro = i and 
104 . 

where C I = N - i; C 2 = (B - 1)/2; k = 4 + 2nl; s = 3 + 2n2; E is dependent on the nature 
of the liquid (Pr o , n I, n 2) and the extent of property variation (N and B). In general, n I 
and n 2 may be dependent on the temperature range. See [9] for a method of determining them, 

as well as detailed values for certain liquids. 

Figure 3 shows e calculated from (8) for n I = n 2 = i. For B = 4, N = 2, e = 1.29, 
which corresponds approximately to NuexD/Nu3 (Fig. 2) for B > 4. Then the discrepancy be- 
tween measurements and the formula of [5] is due to the latter not fully incorporating the 

variable ~. The formula of [5] fits the data well for B < 4. 

This method can be applied to transfer at a vertical plate; for the average transfer, 
one gets an equation analogous to (7) but with a different value of C, while g takes the 
form of (8) as for a horizontal cylinder. As a self-modeling solution exists for a vertical 
plate, one can compare the approximate ~ of (8) with the exact value found from the numerical 

solution of the self-modeling equations: 

f,,,+ 3 + -4-  : :"-  (/')~+ o + B--___L o~+ ~ :o ,  
n~q-1 (9) 

O"+ + P r j O ' = O .  

Equations (9) have been derived by analogy with [14] but on the basis of (4); (9) applies 

for the following ranges: B from 0.i to i0, Pr o from i to i00, and a linear temperature de- 
pendence for $ (n 2 = I). Figure 3 shows the results. The maximum discrepancy is 0.7% in 
heat transfer for Pr o = i or 3.6% in the frictional stress. The corresponding figures 

for Pr o = i00 are 1.0 and 1.4%. 

We also made a comparison with the calculations of [14]; (8) enables one to estimate 
the contribution from the variability with a maximal error of 6% relative to the numerical 
calculation of [14] for water with T o = 10-100~ T c = 100-10~ so the variability is in- 
corporated quite accurately by this approximate method, which has the advantage that the 

correction is analytic, so it is not necessary to use laborious numerical calculations on 

equations such as (9). 

Factor g incorporates the variability in both physical parameters together. It is some- 
times useful to estimate the contribution from each separately, so we put e in the form 

(N, B) = e~ (N) ~ (B). (i0) 
The error of (i0) is not more than 1.7% for 0.i < N < i0, 0.2 < B < 5; from (3) and (4) we 
have 

e~ = [%/~ (T1)] ~ e2= [~ (T2)l~o] ~ 

where T I = T o + Oz(T c - To) is the defining temperature for ~, while T 2 = To + 02(T c - To) 
is that for ~. The dimensionless defining temperatures are 
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0,~- [(~--I)/(N--I)1'!" ' ,  0~= [(~--I)/(B--I)1 'I',. ( i i )  

Then all the complexity in determining the corrections is transferred to calculating | and 
02, and if these are known, (7) can be put as 

Nu = C (Gr.Pr.) ~ ( 12 ) 

where Gr, = gS(T=)(T c - T0)D3/~=(Tz), Pr, = ~(TI)/~. 

Formula (12) is convenient for comparing measurements with calculations for constant 
properties, since the variability is incorporated by means of defining temperatures, not a 
correction factor. 

When measurements are processed, any change in the temperature used in calculating the 
thermophysical parameters in the range T0-T c can alter the Grashof number considerably. 
One thus has to choose a defining temperature, i.e., one corresponding to the condition that 
the equations retain the form applicable to constant physical properties when the properties 
are variable [15]. 

Here (ii) enables one to calculate these temperatues exactly, which differ for the 
various parameters. We have 02 = 7/27 % 0.259 for n 2 = i for the bulk expansion coefficient, 
which corresponds approximately to the mean integral 8 in the range (To, Tv). The 01 for 
the kinematic viscosity is dependent on Pr o and N, and 01 decreases as N increases, while it 
increases with Pro. Values have been given in [7] for m : 2 and n I = i. For Pr o > 102 , 01 
is close to 0.75. The calculated 8 z and 02 correspond well with the empirical values derived 
from measurements in [16]. 

A distinct defining temperature is required for each variable parameter; however, it is 
more convenient to calculate all the parameters for some one temperature, and if this is To, 
one calculates Nu ffi C(Gr0Pr0) ~ with an error of e. For another calculated temperature 
Tm, > To, the error will be less. We derive it for the case T,, ffi T v. 

We apply the above approximate method with ~v/D instead of ~0/D as the velocity scale, 
which gives (13), which is equivalent to (7): 

Nu = C (GrvPr~ ~ v ( 13 ) 

Here ~v is the correction for the variability in the physical properties for the calculated 
temperature Tv: 

ev= Iv (T~-)Iv (T0] ~ ,~5[p (T~)I[~ (Tv)] ~ 

One can show that this e v in fact corresponds to Nuexp/NUcalc, as given in Figs. i and 2. 
For example, ~v % 1.2 for MS-20 oil for N ~ i0, while Nuexp/Nu I is in the range 1.1-1.3. 

The above expressions have been derived for a parabolic temperature profile (m = 2); 
measurements [12] show that m is dependent on the temperature range and on the x coordinate. 
In all eases, m lies in the range 2 ! m < 4, and the corresponding ~ varies by not more than 
3% in the ranges 0.i ! N ! i0, 0.i < B <-i0, i.e., e is only slightly dependent on the type 
of profile in (6), so (8) can be rec-on~nended for practical calculations. 

The formulas in [2, 3] and (8) are fairly cumbersome. As there is only a slight depen- 
dence on the Rayleigh number for Nu/Ra ~ in the boundary-layer state, approximate calcula- 
tions can be based on a formula derived from measurements by least squares: 

0,25-- 0 10 Nu0=0.51 Ra0 e(vo/vc) ' . (14) 

Here r i s  t h e  c o r r e c t i o n  f a c t o r  f o r  v a r i a b i l i t y  in  ~ and ~ c a l c u l a t e d  from t h e  s i m p l i f i e d  
fo rmu l a  

~-= / 1 f l +  :76 
\1-{- C1 [ 81 

14 917 28 7 C~C2)< o, ~5 
c,+ c c2. + + T 
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(7): a) n I = i; b) nl # i; c) calculation from (14). 
Symbols as in Fig. i. 

where C l = N - i, C= = (B - 1)/2; e corresponds to (8) for Pro = i, n I = n 2 = i. 

Figure 4c shows calculations from (14) together with data processed from (7). The 
calculated Nu in Fig. 4a have been derived on the assumption of a linear temperature depen- 
dence for i/v and ~ (n I = n 2 = i). For N < 0.4, the calculated values are overestimates by 
30%, which is because I/v for MS-20 oil does not show linear behavior. 

The refined description gives n I < 1 for N < 1 (Fig. 4b). For N < 0.4, the error is on 
average 15%, which is comparable on the one hand with the error of experiment and on the 
other with the error in describing i/v as a function of (9 via (3). Formula (14) describes 
the measurements for the ranges Ra 0 = 2"i04-i08, Pro= 0.7-3"104, N = 0.04-12, B = 0.4-6 
with a maximum error of +15%. The standard deviation is 7%. This formula can be recommended 
for approximate calculations. 

NOTATION 

~, heat-transfer coefficient, W/m2"~ Tc, wall temperature, ~ To, liquid temperature 
far from wall, ~ v, kinematic viscosity, m2/sec; 6, bulk expansion coefficient, I/~ D, 
cylinder diameter, m; x and y, dimensionless coordinates; u and v, dimensionless velocities 
of liquid along x and y axes corrspondingly; @ = (T - T0)/(T c - To), dimensionless temperature; 
Pr = v/a, Prandtl number; Gr = g~(T c - T0)D3/v 2, Grashof number; Nu = ~D/k, Nusselt number; 
Ra = GrPr, Rayleigh number; f, dimensionless current function [14]; el, correction factor for 
variability of v; ~2, correction factor for variability of 6; TI and T2, defining temperatures 
for v and 6, ~ G~ and 02 , dimensionless defining temperature for v and 6. Subscripts: 0, 
v, and c, relate to the temperatures T O , T v, and T c correspondingly. 
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HEAT TRANSFER WITH CONDENSATION ON MESH CAPILLARY 

STRUCTURES OF HEAT PIPES 

Z. Sh. Semerkhanov, G. F. Smirnov, and 
B. A. Afanas'ev UDC 536.421.4 

The authors present results of an experimental investigation of heat transfer 
with condensation of water vapor on the capillary structures of heat pipes. They 
compare the test data with theory. 

The thermal resistance of low-temperature heat pipes depends on the intensity of heat 
transfer in the condensation section more strongly, the less is the heat removal area com- 
pared with the surface area of the heat supply zone. The need to reduce the mass and size 
of heat exchange equipment has led to the situation that in heat pipes with minimum possible 
length of the condensation section the total thermal resistance of the pipe is roughly the 
same as the thermal resistance of the heat removal section. Therefore for this type of heat 
pipe it is especially important to have: i) well-founded physical ideas as to the heat re- 
moval mechanism for different conditions of condensation on the capillary surfaces of the 
heat pipe; 2) reliable knowledge of the dependence of the heat removal intensity on the basic 
independent factors. 

The presently available experimental data on heat removal with condensation in capil- 
lary structures has been obtained from tests on heat pipes (e.g., [1-5]). In most cases the 
test results suggest a thermal resistance with condensation in the form 

~= ~i%. (1) 

It is noted in [i] that on the surface of a metal fiber capillary structure with conden- 
sation there is a liquia film of thickness on the order of i0 ~m. It is suggested that the 
thickness of this film is constant and does not depend on the main regime and geometrical 
parameters. 

Reference [2] suggested a method of calculating Rc, using the heat transfer coefficient 
with condensation ~c, determined ~rom the correlation equations. But here no basis was given 
for choice of the correlation or the structure of the correlation equations. 

It should be noted that in tests on heat pipes one can have too little and too much heat 
transfer agent, leading to a deviation of the heat transfer coefficients with condensation 
from the nominal value. 

Odessa Technological Institute of the Refrigeration Industry. Translated from 
Inzhenerno-Fizicheskii Zhurnal, Vol. 53, No. 2, pp. 237-242, August, 1987. Original article 
submitted May ii, 1986. 
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